Market Power Analysis in the Presence of Transmission Constraints

INFORMS Fall 1999 Meeting Philadelphia, PA

> Presented by Assef A. Zobian

Tabors Caramanis & Associates Cambridge, MA 02138 November 7, 1999

Presentation Outline

- Definition of Market Power
- How and why it is an issue ?
- Competition or Regulation
- Measurement of Monopoly Power
- Model-based Approach
- ♦ Illustrative Examples

 Definition: Ability of single firm or group of competing firms in a market to <u>profitably</u> raise prices above competitive levels and restrict output below competitive levels for a <u>sustained</u> period of time.

Why Do We Care?

- Mitigation of market power is essential for successful implementation of the de-regulation of the electric power industry.
- Important for
 - the consumers to realize the benefits of de-regulating the industry, and
 - for efficient operation of generation market.

Vertical Market Power

- Same entity owns resources across production levels (generation, transmission, distribution).
- Structural solutions to vertical market power require vertical disintegration or functional unbundling (GenCo, TransCo, DistCo) while maintaining the transmission system regulated (Transmission Open Access).
- TransCos and/or ISOs are a major step in addressing vertical market power problems.

- Same entity owns resources at the same production level (generation).
- Transmission open access with RTOs mitigates some of the institutional horizontal market power problems (eliminate pancaking, increases competing capacity).
- There is no general structural solution that fits all areas.
- Requires detailed analysis on a case by case basis using a <u>standard</u> approach focusing on profitability of strategic behaviour.

Non-Cooperative Oligopoly

Definition:

- few relatively large firms
- modest or high entry barriers
- mutual interdependence of firms
- similar or identical products

Regulation vs. Market

- Regulation at its best can reach the outcome of competitive markets.
- Willing to live with less than perfect competitive markets (workably competitive) if the social welfare loss is less than the cost of regulation
 - "Choice between imperfect and costly regulation versus market imperfections"

♦ It is preferable to have:

- Market-based mitigation options, and
- Minimal residual regulation when none of market-based mitigation options work.

Structural Indices

Structural concentration: Herfindahl-Hirschman Index (HHI).

- Sum of squares of market shares
- Acceptable levels (1000-1800)

♦ Market shares (one criterion would be less than 30%)

How good are these indices?

- do not take into account potential competition or market realities such as transmission constraints, and
- cannot capture potential strategic behaviour.

 Lerner Index is a measure of the prices above competitive levels (Price-Cost Margin Index):

$$L_i = (P_i - C_i) / P_i = 1 / \boldsymbol{e}_i^d$$

 \boldsymbol{e}_i^d is the elasticity of demand facing the firm i

Behavioral Analysis

Should capture

- Short-term as well as medium-term and long-term dynamics
- Barriers to entry (or lack of) and other market realities
- Transmission constraints

Profitability & Market Equilibria

- Behavioral analysis measures increase in profitability under different market equilibria.
- Nash: A player maximizing its own payoff given the strategies followed by all opposing players (General equilibrium)
 - Cournot: Set of outputs for which each firm maximizes profit given the outputs of the remaining firms
 - Bertrand: Set of outputs for which each firm maximizes profit given the prices of the remaining firms
 - Supply Function: Set of outputs for which each firm maximizes profit given the supply curves of the remaining firms

Strategic Bidding- Strategy One

- Strategy One: Bid up to the next unit in the merit order.
- This strategy increase generators profits without risking losing revenues, since same unit merit order is maintained

Strategic Bidding-Strategy Two

- Bid up to the next owner in the merit order.
- Generation companies can increase market clearing prices without risking losing any profits since they are maintain the same company merit order

Strategic Bidding- Strategy Three

• Bid up anticipating that your competitors will follow a strategy (any of the above strategies).

Equilibrium Strategies

- The SFE approach is a sophisticated form of strategy three where the units maintain the same unit merit order.
- Cournot equilibrium involves changing the merit order and effectively withdrawing capacity.
- Prof. Hogan adds strategic behavior by transmission right owners.

Generation Capacity Withholding

- Generation companies have incentives to withhold capacity and increase market clearing prices only if they can increase their profits
- Generation company increase their profits by withholding units only if the increase in revenues is higher than the lost opportunity costs

Profitability for BlueCo

Profitable Strategic Bidding

- A generation company <u>may</u> profitably withhold capacity or strategically bid if any of the following is true:
 - it owns many generating units and has a relatively large market share
 - its units are strategically located on the supply curve (many baseload and marginal units)
 - it can implicitly collude with other generating companies to reach a market equilibrium

Ownership of Generation Units

T C A

Load Histogram

Summer Load

Ownership of Marginal Units

MAPS-Based Modeling

- Hypothesis: Company GEN\$ can exercise market power by increasing its bids
 - Use a market power model (Nash equilibrium) to determine bidding strategy
- Test Hypothesis given market, generation, transmission system and regulatory conditions
 - Use bids provided by the market power model in MAPS
 - Determine profits and validate the strategy with transmission constraints

Overview of MAPS Modeling Process

TCA obtains the MAPS databases from GE and

- Validates against reliable, public, sources
- Validates against the Client database

MAPS Database

- Load forecast
- Thermal units characteristics
- Fuel price forecast
- Transmission system representation
- Conventional hydro and pump storage units
- Supply curves for neighboring systems

Illustrative Example

Identify Major Interfaces (Geographic Markets)

Scenario Analysis

Base Case runs- All units in region bid "competitively" with bids set at marginal costs.

- to validate MAPS assumptions and outputs against practical judgement
- also to provide detailed data for comparison and analysis of scenarios
- Market Power and Mitigation Runs are performed to examine the degree of market power and the ability to mitigate
 - Market Power Case All non-GEN\$ units bid as in base case, but GEN\$ units bid higher trying to exercise market power, OR all units bid strategically. Ownership as in Base Case
 - Mitigation Case GEN\$ bidding continues to bid high, but some (Y%) of its plants are divested or regulated (cost-based bids or must-run contracts)

Market Power and Mitigation Effect

Margins shown are for that subset of units which is retained by GEN\$ during the mitigation case, but are consistent with the results using all units

	Case			
	Base	Market Power	Mitigation	
Avg. Margin (\$/MWh)	\$5.42	\$14.42	\$5.60	

Energy Prices

Energy Prices by Scenario

Average Daily Prices

Interface Flows

Average Daily Flows

Congested Transmission Interfaces

Interface Loading Levels

Interface	INT 1 IN	T2 IN	NT 3
Capacity (MW)	1000	800	1000
Base Case			
Load Factor 100% (% of yr)	0.0%	2.5%	0.8%
Load Factor >80% (% of yr)	10.0%	10.0%	8.0%
Load Factor >50% (% of yr)	80.0%	20.0%	20.0%
Market Power Case			
Load Factor 100% (% of yr)	15.1%	0.1%	9.3%
Load Factor >80% (% of yr)	70.0%	20.0%	30.0%
Load Factor >50% (% of yr)	95.0%	30.0%	90.0%
Mitigation Case			
Load Factor 100% (% of yr)	2.2%	0.5%	6.3%
Load Factor >80% (% of yr)	40.0%	15.0%	30.0%
Load Factor >50% (% of yr)	85.0%	25.0%	70.0%

Detailed MAPS Results

	Base Case			Market Power Case			Mitigation Case	
	Plants to be	Plants to be		Plants to be	Plants to be	e	Plants	Plants
	retained	divested	All Plants	retained	divested	All Plants	retained	divested
Sum of Generation (GWh)	1,050	1,340	2,390	740	1,175	1,915	532	1,420
Sum of Fuel by Gen (\$K)	\$13,535	\$16,400	\$29,935	\$12,965	\$17,984	30,949	\$7,259	\$21,71
Sum of O&M (\$K)	\$920	\$1,755	\$2,675	\$716	\$1,787	2,503	\$450	\$1,958
Sum of Generation Cost (\$k)	\$14,500	\$18,160	\$32,660	\$13,680	\$19,770	33,450	\$7,700	\$23,67
Sum of Energy Revenue (\$K) \$19,890	\$24,400	\$44,290	\$29,740	\$47,166	5 76,906	\$7,500	\$20,00
Sum of Energy Margin (\$K)	\$5,430	\$6,240	\$11,670	\$16,055	\$27,395	43,450	\$3,500	\$8,000
Avg. Revenue (\$/MWh)	\$18.94	\$18.21	\$18.53	\$40.19	\$40.14	\$40.16	\$14.10	\$14.08
Avg. Margin (\$/MWh)	\$5.17	\$4.66	\$4.88	\$21.70	\$23.31	\$22.69	\$6.58	\$5.63

Market-based Remedies (Mitigation)

- Regulation should be minimal
- Price caps
- ♦ Divestiture
- Must-run cost-based bids
- Control delegation (long-term operation control)
- Contract for differences
- Transmission reinforcements
- Transmission rights for load

Are Electric Generation Markets Contestable?

- Contestability: Little entry and exit costs
- Long term equilibrium: contestable markets are equivalent to Bertrand equilibrium where prices are capped at the cost of new entry or long-run average cost
- How much contestable?
- Are there barriers to entry ?
- What about new generation technologies ? Distributed generation ?

Where is the Cutoff?

- Where do you draw the line between economic rent and market power rent?
- If the market is competitive with no significant barriers to entry would not the average price be naturally capped by the long-run cost of energy production ? If it is higher, it is an invitation for new entry.

Conclusions

- An accurate representation of the electricity markets including physical, operation and market design constraints is essential for proper analysis of market power in these markets.
- Transmission constraints are very important in defining geographic markets.
- Structural indices are not a good measure of market power in the presence of transmission constraints.
- The most effective solution to market power is elimination of barriers to entry especially transmission related barriers (new interconnection and open access).

